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Abstract

Fisher linear discriminant analysis (FLDA) based on variance ratio is compared
with scatter linear discriminant (SLDA) analysis based on determinant ratio. It is
shown that each optimal FLDA data model is optimal SLDA data model but not
opposite. The novel algorithm 2SS4LDA (two singular subspaces for LDA) is
presented using two singular value decompositions applied directly to normalized
multiclass input data matrix and normalized class means data matrix. It is
controlled by two singular subspace dimension parameters ¢ and 7, respectively. It
appears in face recognition experiments on the union of MPEG-7, Altkom, and
Feret facial databases that 2SS4LDA reaches about 94% person identification rate
and about 0.21 average normalized mean retrieval rank. The best face recognition
performance measures are achieved for those combinations of ¢,» values for which
the variance ratio is close to its maximum, too. None such correlation is observed
for SLDA separation measure.
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Abstract. Fisher linear discriminant analysis (FLDA) based on vari-
ance ratio is compared with scatter linear discriminant (SLDA) analysis
based on determinant ratio. It is shown that each optimal FLDA data
model is optimal SLDA data model but not opposite. The novel algo-
rithm 2SS4LDA (two singular subspaces for LDA) is presented using two
singular value decompositions applied directly to normalized multiclass
input data matrix and normalized class means data matrix. It is con-
trolled by two singular subspace dimension parameters ¢ and 7, respec-
tively. It appears in face recognition experiments on the union of MPEG-
7, Altkom, and Feret facial databases that 25S4LDA reaches about 94%
for the person identification rate and about 0.21 for the average normal-
ized mean retrieval rank. The best face recognition performance measures
are achieved for those combinations of ¢, r values for which the variance
ratio is close to its maximum, too. None such correlation is observed for
SLDA separation measure.

1 Introduction

Linear Discriminant Analysis, shortly LDA, deals with the training sequence
X = [x1,...,21] of multidimensional data vectors (z; € RN, i =1,... L).

In general the data vectors are obtained using a measurement process for
objects from certain classes C1, ..., Cy, i.e. i-th element of X belongs to class C;;.
Let the number of elements x; which represent class j be L;,i.e. L = Li+---+L.
We can identify elements in X extracted from j-th class by the index set I;:
I; = {i: z; represents class C;}.

LDA is based on statistical concepts of data variances and covariances. The
unbiased vector within-class variance var,, (X ) and the unbiased vector between-

-1

class variance vary(X) have the form : var, (X) = 1= Z;Zl Zielj |z — @7 |2,

vary(X) = 7 ijl L;||77 — 7||?, where the class vector mean 77 and grand
vector mean T are: 7/ = Dier, vi/Lj, T = Ele x;/L.

The data covariances within classes are represented by the within-class scatter
matric Sy, (X) = ijl Zielj (x; —77)(x; —7?)" /(L —J), while the between class
covariances are defined by the matrix S,(X) = ijl Li(@ —z)(@ —z)'/(J-1)
called the between-class scatter matriz.



For the given dimension r of the feature vector y = Wiz, LDA attempts to
find a linear transformation matrix W € RV*" W = [wy,...,w,], w; € RY for
the training sequence X which gives the best separation for the classes. Then
the scatter matrices and data variances are transformed accordingly: S,,(Y) =
WS (X)W, var,(Y) = tr(WiS,(X)W), Sp(Y) = WS, (X)W, var,(Y) =
tr(WES,(X)W), where Y = [Wthrq,...,Wtzy] is the sequence of feature vec-
tors for X.

In this paper two measures f(W) and g(W) of separation concept are con-
sidered. The first one, originally proposed by Fisher ([5]), takes into account the
ratio of between-class variance to within-class variance. While the second one,
very commonly cited in face recognition applications (e.g. [4, 6, 7]) replaces vari-
ances by determinants (| - |) of corresponding scatter matrices ([2]) as measures
of data scattering. Both measures lead to two modeling techniques with two
different families of LDA models F,. and S, defined for 1 <r < N:

1. Fisher linear discriminant analysis (FLDA) with models in F,.(X):

. tY(WtSbW)
1) = tr(WtS, W)
Fr(X) = {W e RN*" : W = argmax f(W), W!S,W = I, W Lker(S,)}

2. Scatter linear discriminant (SLDA) with models in S, (X):

L WS, W
- WitS,W|
S (X) = {W e RN*" . W = argmax g(W), |[W'S,W|# 0}

g(W)

The paper is organized as follows. In section 2 algorithmic characterization of
FLDA models is given and efficient algorithm 25SS4LDA is described. In section 3
mutual relations between FLDA and SLDA models are presented. Experiments
on facial databases are discussed in section 4.

2 Algorithm for FLDA models

The requirement W*S,,WW = I for FLDA model ensures that class mean shifted,
data vector components become decorrelated and of unit variance in LDA co-
ordinates. The column vectors of W = [wy,...,w,] of FLDA model are sought
within the hyper-ellipsoid B = {z : 'S, = 1,z Lker(S,)}.

Let us consider the reduced eigenvalue decomposition (REVD) for S,, =
UgoAgo UL | where the first ¢o = rank(S,,), columns in U and A are chosen,

A = dia(g()\l, ..y AN), A1 > -+ > An. Then the search space has the form:
B={x:2'S,x =1,zlker(S,)} = {Aa: A = Uy Ay'?, a € R, |of = 1}.
Now, the behavior of the objective function w!S,w can be analyzed using REVD
for A'S,A = VX, V!, where rg = rank(A'SyA) : w'Syw = o' A'S,Aa =
a'Vyy X0, Vi o Maximization of w'Syw with the constraint 1 — o’ = 0 by



Lagrangian multipliers leads to the stationary points o = vi with value oy,
k=1,...,7r9. Therefore the optimal point for the Fisher goal function f(W) =
f(wi,...,w,) can be combined from locally optimal points wy = Avy of the
quadratic form w?S,w for r < rg :

fOWV) = tr(W'S,W) /r = ZwZSbwk/r (1)
k=1
rf(W) < Zv};AtSbAvk = Zv,ﬁVTUZ‘TU m”k = Zak (2)
k=1 k=1

Hence the optimal W = AV,., r < rg, and FLDA models can be compactly
characterized as follows: F.(X) = {W € RV*" : W = qu/l;)l/er}, Sw =
Up AUt | A = Uy Ag)?, AtS,A = V, 5, Vit and for r < ro WS,W =

q0° ro V1o
Vrt(AtSbA) = ViV 2 ViV, = 2.

By the above FLDA properties we propose the novel algorithm 2SS4LDA
(two singular subspaces for LDA). It is based on two singular value approxi-
mations applied directly for the normalized multiclass input data matrix and
the normalized class means data matrix. It is controlled by subspace dimension
parameters ¢ and 7. The first singular subspace of dimension ¢ is designed for
original data and it used to compute new coordinates for class means. The sec-
ond singular subspace is built in this new coordinates. In a sense it is nested
SVD procedure. The feature vectors are computed using r left singular vectors
spanning the second singular subspace.

Algorithm 1. 2SS4LDA - Two Singular Subspaces for LDA

Input Data sequence X = [z1,...,x1],x; € RN, class membership vector I,
desired LDA feature vector dimension r, and desired first singular subspace
dimension q.

Output Corrected values of singular subspace dimensions q,r and FLDA model
W e RVxT,

Method Perform the following steps:
1. Compute the global centroid ¢ and class centroids: C' «— [c1,...,cj]
2. Perform centroid shifting and normalization for data matrices X,C' :

ifi € I theny; — (x; —¢;)/VL—J,i=1,...,L,

dj — (cj—c)\/L;j/(J=1), j=1,....J

3. Find the singular subspace of Y = [y1,...,yr] by performing SVD forY
obtaining qo = rank(Y") left singular vectors Uy, « [u1,...,uq,] corre-

sponding to positive singular values /Lllé — VA,V A



4. 1f ¢ > qo then q — qo

If ¢ < qo then Uy «— [u,. .., ug and/lé/2 — VA1, /A
5. Compute whitening projection matriz: Aq — Uq/lq_l/2
6. Make whitening projection for normalized class means:

dj‘*AfUdja ]:1,,J

7. Find the singular subspace of D = [dy,...,d;] by performing SVD for
D obtaining ro = rank(D) left singular vectors Vy, «— [v1,...,0y,] corre-
sponding to positive singular values

8. Ifr > 1y then r — rg
If r <rg then V. — [v1,...,0,]

9. Compute FLDA model, i.e. the projection matrix W: W «— AV,

Note that for go = rank(S,,) the above algorithm produces the exact FLDA
model and for ¢ < qq its approximation is obtained. In face recognition problem
the optimal value of the measure f(W) is obtained for ¢ much less than the rank
of normalized data matrix Y. It means that the better mean class separation
occurs for Y projected (with whitening) onto its singular subspace of much
lower dimension than the dimension of subspace spanned by vectors in Y.

Note that qg, the rank of Y (equal to the rank of S,,) is bounded by min(L —
J, N), while r¢, the rank of D (equal to the rank of Sp) is bounded by min(J —
1,qo). Therefore, the constraint for the feature vector size is r < min(L — J,J —
1,N).

In FLDA modeling for face recognition, J is the number of persons in the
training database and in our experiments it is less than N and L — J. Hence if
q = qo then the rank of data matrix D is equal to the number of training persons
minus one: 7g = J — 1.

3 On relation of FLDA and SLDA models

It is well known (by the analysis of stationary points for (1)) that the optimal
SLDA models are sought by solving the generalized eigenvalue problem (cf. [2])
of the following form S,W = S,,WA,., where A, = diag(A1,...,\), Ay > -+ >
A > 0.

Let &,.(X) denotes the set of all solutions of the above generalized eigenvalue
problem. It means that S,.(X) C &.(X).

It can be easily proved that local maxima for g(W) are always global, i.e. for
optimal W € S,.(X) the scatter separation measure has always the same value:

g(W)

WS, WS, WA, WS, WA ﬁx
Cwes, Wl WS, w —wis,w - L

It also implies that &.(X) C §,(X) and in conclusion S,(X) = &.(X).



By Lagrangian optimization of w!Syw at w!S,w = 1 we get Spw = uS,w.
Hence the optimal FLDA models have to satisfy the generalized eigenvalue equa-
tion and therefore F,.(X) C &.(X).

The above inclusion is strict. To show it let us observe that by equation (2)
and by tr(I) = r if W € F,.(X) we have f(W) =>",_, ox/r.

On the other hand there is simple relation between any two models W1, W5 €
Er(X) : there exists a block diagonal matrix I" = diag(Bj, ..., B,/) such that
W1 = WhI. Suppose that also Wy € F,.(X). If there is no multiple eigenvalues
then I = diag(vy1, . - ., V) is diagonal what is the case for real life data matrices.
Then for any matrix Z € R™" : tr(I"ZI') = 3"} _; Vi Zkk. Hence if there is no
multiple eigenvalues:

t11/t r
(F WZSbWQF Zakak Zk 1Uk

fWh) = f(Wal') = (CWESWaT)

where oy, = v2/(v + -+ ++2) . The above inequality becomes equality only if
M= =

In general case when I' = diag(By, ..., B;/), denoting by Zli?c) the submatrix
of Z corresponding to By, we have: tr(I"ZI') = >, _, tr(B,iZ,gZ)Bk). Hence
tr(IEWE ry  alsI)
r(TWES,WoT')  tr( Zakak Ek 1Ok

fOV) = f(Wal') = tr(DEWES,Wal)  te(1)

where a = tr(B}By)/(tr(BiBy) + -+ + tr(BL B,s)) . The above inequality
becomes equality only if tr(B{By) = - -+ = tr(BL, B,).

Therefore, independently of multiplicity of eigenvalues, there are always op-
timal models in SLDA which are not optimal in FLDA. In summary:

fr(X) - ST‘(X) = gr(X)

We have shown that there are optimal SLDA models which are not optimal
FLDA models. Can we find optimal SLDA which are not FLDA models, but
they achieve maximum value of f(W) ? The answer is positive. Namely, those
SLDA models W € RYX" for which all diagonal elements of the within-class
scatter matrix W'S, W are identical, give maximum value of LDA separation
measure f(W), i.e. for W satisfying the equation S,W = S,,WWA :

tr(WIS,W)  tr(WES,WA) > arh
tr(WES, W) tt(WiS,W) S,  ax

fW) =

where ay = (WS, W)k > 0.

Hence, the maximum value of f(W) (equal to ), Ax/r) is achieved if and only
if ay = -+ = ;. Of course, the class of such matrices W includes F,.(X). Inclu-
sion is strict as any matrix W’ = \/aW obtained by uniform scaling by \/a # 1 of
FLDA optimal model W gives SLDA optimal model which is not FLDA (since
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Fig. 1. Left: FLDA separation measure f(W) as function of singular subspace di-
mension ¢ for class mean shifted original data (model dimension r = 48). Right:
Corresponding average success rate (ASR) using 2SS4LDA algorithm in three person
identification experiments (descriptor size: 240 bits).

W'S,W’' = al). Let us denote the class of such models by }'T(a)(X). Then
Fr(X) = FV(X).

Another observation: if multiplicities of all eigenvalues in A, are equal to one
then any SLDA model makes diagonalisation of S, : WS, W = I'*I, i.e. LDA
projected variables are uncorrelated. This very commonly happens in practice.

If "I is not a scalable form of unit matrix, i.e. I"*I" # «l, then the model
W is optimal SLDA model which achieves less value of separation measure f(W)
than optimal FLDA models: W € 8,(X) — U~ F ) (X).

Finally, the relation between two concepts of optimal separation of classes
can be summarised by the following inclusions:

F(X) | FEX) € S (X) =E(X) .

a>0

4 Experiments

In order to perform comparative tests of our method in face recognition task we
use images from three databases: Altkom (1200 images, 80 persons), MPEG-7
(3175 images, 635 persons) and FERET subset (4000 images, 875 persons).

Every image has size 46x56 and eyes manually located. Initial preprocessing
includes automatic background cutting off.

The half of Altkom and MPEG databases constitutes the training set on
which the model matrix W is calculated according to the proposed algorithm
2SS4LDA for FLDA models and generalized Schur algorithm (GSCHUR) for
SLDA models (cf. [3]). The other half along with FERET images is used for
extracting feature vectors and testing.

The four experiments are considered conforming MPEG-VCE face recog-
nition visual core experiment (cf. [1]): image retrieval(FIR) and three various
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Fig. 2. Average normalized mean retrieval ratio (ANMRR) in function of subspace
dimension ¢ in FLDA experiments (Left: » = 48, 240 bits; Right: r = 128, 640 bits).

person identifications(PID). In FIR every single image from testing set becomes
a query while in PID the specific disjoint subsets of testing set are chosen for
query and test respectively.
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Fig. 3. Left: SLDA separation measure g(W) as function of dimension ¢ for principal
subspace which is used for input data matrix singularity conditioning (model dimension
r = 48). Right: Corresponding average success rate (ASR) using GSCHUR algorithm
in three person identification experiments (descriptor size: 240 bits).

5 Conclusions

We have proved that each optimal model of data sequence X in Fisher linear
discriminant analysis is also optimal in scatter linear data discriminant analysis.
Moreover, there is infinity of models optimal in SLDA which are not optimal
in FLDA. There is also infinity of SLDA models which maximize Fisher class
separation measure f(W). There exists mathematically closed formulas for those
interesting subclasses of SLDA class of data models. They are based on the types
of within-class scatter matrix diagonalisation.
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Fig. 4. Average normalized mean retrieval ratio (ANMRR) in function of subspace
dimension ¢ in SLDA experiments (Left: » = 48, 240 bits; Right: r = 128, 640 bits).

The proposed algorithm 2SS4LDA performs two singular value decomposi-
tions applied directly to normalized multiclass input data matrix and normalized
class means data matrix. By tuning two singular subspace dimension parameters
q and r, we can optimize ratio of between and within-class variance what leads
to better performance in face recognition application.

We have observed that using GSCHUR algorithm with regularization by
projection of the original data X onto singular subspace of dimension ¢ gives
the best results very close to the best results of 2SS4LDA but for quite different
settings of ¢ and r.

High correlation of the class separation measure in FLDA with face recogni-
tion performance was found in contrary to SLDA case.

On very demanding facial databases of MPEG-7 VCE, the LDA classifier
built by proposed algorithm gives 94% for the person identification rate and
about 0.21 for the average normalized mean retrieval rank.
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